
Elementary Data Structures

Pramesh Kumar

IIT Delhi

January 4, 2024

Introduction

A data structure is a way of storing and manipulating data within
computer memory.

2

Outline

Array

Stack

Queue

Linked list

Conclusions

Array 3

Array

▶ Used for storing an ordered set.

▶ Each element of the set is identified using a key or index.

▶ Each element occupy same memory size.

2 8 4 5 1

▶ Accessing element can be performed in O(1) time. For example, for
kth element we just use array[k].

▶ Deleting an element may require as many operations as the length of
the array.

Matrix

▶ A matrix is a two-dimensional array where data is stored in form of
rows and columns.

Array 4

Stack

▶ A special kind of ordered list in which all insertions and deletions
take place at one end called the top.

▶ It follows LIFO order for operations.

▶ Checking if Stack is empty can be performed in O(1) time.

1: procedure Stack Empty(S)
2: if top(S) == 0 then:
3: return TRUE

4: else
5: return FALSE

6: end if
7: end procedure

Array 5

Outline

Array

Stack

Queue

Linked list

Conclusions

Stack 6

Stack

▶ Inserting or pushing an element e can be performed in O(1) time.

1: procedure Stack Push(S, e)
2: if top(S) == size(S) then:
3: error ”overflow”
4: else
5: top(S) = top(S) + 1
6: A[top(S)] = e
7: end if
8: end procedure

▶ Deleting or popping can also be performed in O(1) time.

1: procedure Stack Pop(S)
2: if Stack Empty(S) ==TRUE then:
3: error ”underflow”
4: else
5: top(S) = top(S)− 1
6: return S[top(S) + 1]
7: end if
8: end procedure

Stack 7

Outline

Array

Stack

Queue

Linked list

Conclusions

Queue 8

Queue

▶ A special kind of list in which elements are inserted at one end
called rear and deleted from the other end front.

▶ It follows FIFO order for operations.

▶ Checking if the queue is empty can be performed in O(1) time.

1: procedure Queue Empty(Q)
2: if rear(Q) == size(Q) then:
3: return TRUE

4: else
5: return FALSE

6: end if
7: end procedure

Queue 9

Queue

▶ Inserting an element or enqueue x can be performed in O(1) time.

1: procedure Enqueue(Q, x)
2: Q[rear(Q)] = x
3: if rear(Q) == size(Q) then
4: rear(Q) = 1
5: else
6: rear(Q) = rear(Q) + 1
7: end if
8: end procedure

▶ Deleting an element or dequeue can be performed in O(1) time.

1: procedure Dequeue(Q)
2: x = Q[front(Q)]
3: if front(Q) == size(Q) then
4: front(Q) = 1
5: else
6: front(Q) = front(Q) + 1
7: end if
8: end procedure

Queue 10

Outline

Array

Stack

Queue

Linked list

Conclusions

Linked list 11

Linked list

▶ A linked list is a data structure in which the objects are arranged in
linear order which is determined by a pointer in each object.

▶ Two types

– Doubly linked list: Each element is an object with an attribute key
and two pointer attributes next and prev. Given an element x,
next(x) points to its successor in the linked list whereas prev(x)
points to its predecessor in the linked list. If prev(x) = NIL, then x
is the first element. Similarly, if next(x) = NIL, then x is the last
element of the linked list. head(L) points to the first element of
linked list L.

/ 8 17 1 5 /

prev next
key

head(L)

– Singly linked list: Unlike doubly linked list, it has only one pointer
attribute next.

Linked list 12

Doubly linked list

▶ Searching an element with key k in doubly linked list L of size n can
be performed in Θ(n) time.

1: procedure List Search(L, k)
2: x = head(L)
3: while x ̸= NIL and key(x) ̸= k do
4: x = next(x)
5: end while
6: end procedure

▶ Inserting an element x to the front of the linked list can be done in
O(1) time.

1: procedure List Prepend(L, x)
2: next(x) = head(L)
3: prev(x) = NIL

4: if head(L) ̸= NIL then
5: prev(head(L)) = x
6: end if
7: head(L) = x
8: end procedure

Linked list 13

Doubly linked list

▶ Inserting an element x immediately following y can be performed in O(1)
time.

1: procedure List Insert(x, y)
2: next(x) = next(y)
3: prev(x) = y
4: if next(y) ̸= NIL then
5: prev(next(y)) = x
6: end if
7: next(y) = x
8: end procedure

▶ Deleting an element x can be done in O(1) time.

1: procedure List Delete(L, x)
2: if prev(x) ̸= NIL then
3: next(prev(x)) = next(x)
4: else
5: head(L) = next(x)
6: end if
7: if next(x) ̸= NIL then
8: prev(next(x)) = prev(x)
9: end if

10: end procedure

14

Outline

Array

Stack

Queue

Linked list

Conclusions

Conclusions 15

Conclusions

▶ Implementing an algorithm using efficient data structures can make
a lot of difference in the running time of the algorithm.

▶ We studied a few elementary data structures.

▶ I encourage you to study other data structures such as binary search
tress, red-black trees, hash tables, different types of heaps, etc.

Conclusions 16

Suggested reading

1. CLRS Chapter 10

2. AMO Appendix A

17

Thank you!

18

	Array
	Stack
	Queue
	Linked list
	Conclusions
	

